A Novel Discourse Parser Based on Support Vector Machine Classification
نویسندگان
چکیده
This paper introduces a new algorithm to parse discourse within the framework of Rhetorical Structure Theory (RST). Our method is based on recent advances in the field of statistical machine learning (multivariate capabilities of Support Vector Machines) and a rich feature space. RST offers a formal framework for hierarchical text organization with strong applications in discourse analysis and text generation. We demonstrate automated annotation of a text with RST hierarchically organised relations, with results comparable to those achieved by specially trained human annotators. Using a rich set of shallow lexical, syntactic and structural features from the input text, our parser achieves, in linear time, 73.9% of professional annotators’ human agreement F-score. The parser is 5% to 12% more accurate than current state-of-the-art parsers.
منابع مشابه
HILDA: A Discourse Parser Using Support Vector Machine Classification
Discourse structures have a central role in several computational tasks, such as question–answering or dialogue generation. In particular, the framework of the Rhetorical Structure Theory (RST) offers a sound formalism for hierarchical text organization. In this article, we present HILDA, an implemented discourse parser based on RST and Support Vector Machine (SVM) classification. SVM classifie...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملRobustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کامل